
SPSS Practical Manual on Factorial Experiments

D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

SPSS Practical Manual on Factorial Experiments

D. S. Dhakre, D. Bhattacharya and Bhola Nath

Institute of Agriculture, Visva-Bharati, Sriniketan West Bengal -731 236, India

Example:

The yields of wheat (C-591), in lbs per plot, under the various treatment combinations in the randomized block design carried out at a research station are given below. There were three sowing dates S1, S2 and S3, which may be regarded as three levels of the factor, S and four levels of the factor N or doses of Nitrogen namely. There were, thus 3×4 or 12 treatment combination tested in a randomized block design with six replications.

Identify the design, analyze the data and draw your conclusion.

Factor	Level	Coded Level
	First	S ₁
Sowing Dates (S)	Second	S_2
	Third	S_3
	0 lbs. (Control)	N_0
Doses of Nitrogen (N)	30 lbs.	N_1
	60 lbs.	N_2
	90 lbs.	N_3

Mathematical Model:

$$y_{ijk} = \mu + b_i + \alpha_j + \beta_k + \delta_{jk} + \varepsilon_{ijk}$$

Yield = μ + Replication + Factor A + Factor B + Interaction (A×B) + ε_{ijk}

where

 y_{ijk} = Response from the i^{th} block for j^{th} level of A and k^{th} level of B

 μ = inherent response (General effect)

 b_i = Effect of i^{th} replication (blocks)

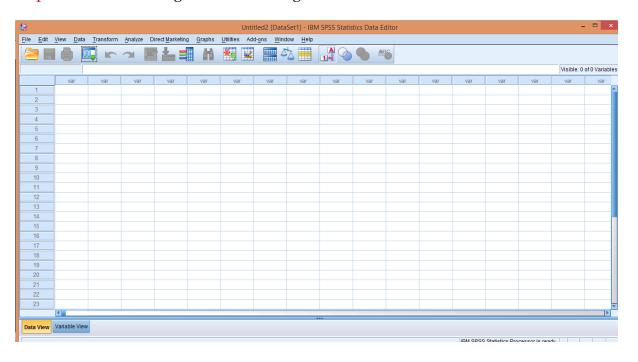
 α_i = Effect of j^{th} level of factor A

 β_k = Effect of k^{th} level of factor B

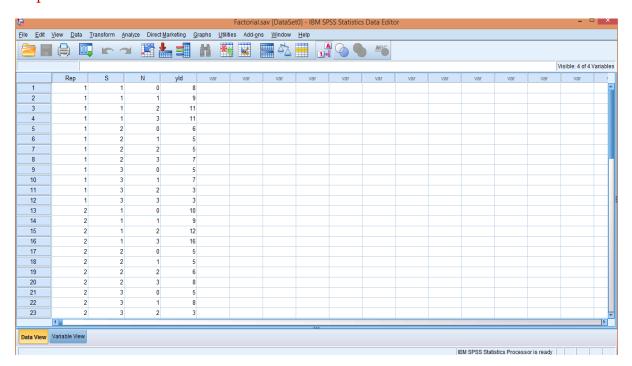
 δ_{ik} = Interaction between j^{th} level of A and k^{th} level of B

 ε_{ijk} = Error associated with y_{ijk}

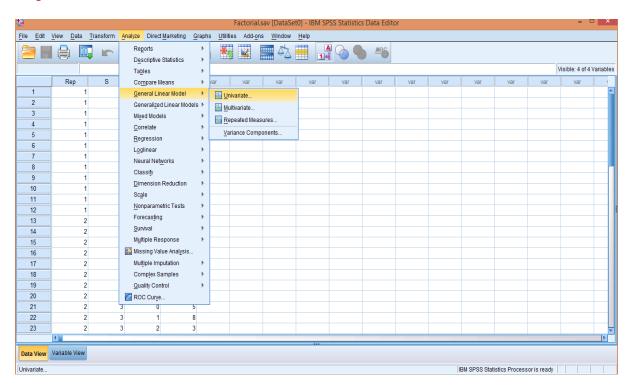
j=1, 2, ..., p; k=1, 2, ..., q

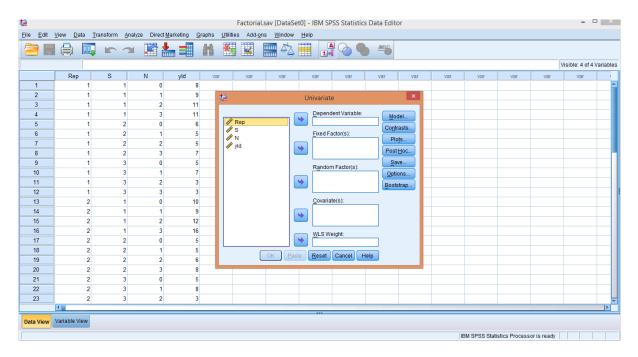

Treatment combinations	R1	R2	R3
S_1N_0	8.30	10.30	8.00
S ₁ N ₁	9.30	9.00	9.50
S ₁ N ₂	11.30	11.50	11.30
S ₁ N ₃	10.50	15.70	10.50
$S_2 N_0$	5.70	4.50	8.30
S ₂ N ₁	4.70	5.30	8.00
$S_2 N_2$	5.30	5.50	8.00
$S_2 N_3$	6.50	8.30	8.00
$S_3 N_0$	5.00	4.70	1.50
S ₃ N ₁	7.00	8.30	2.50
S ₃ N ₂	3.30	3.30	2.50
S ₃ N ₃	2.70	4.30	1.30

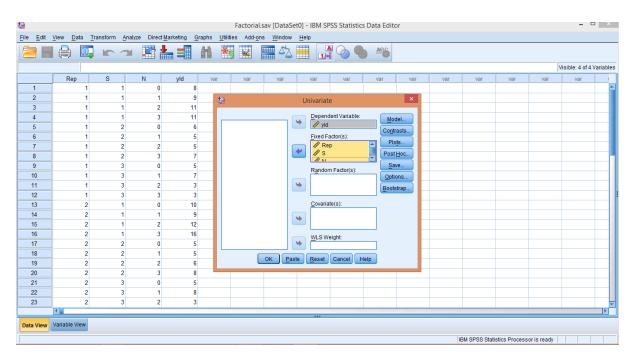
Step 1: Arrange the Data for analysis in this way:

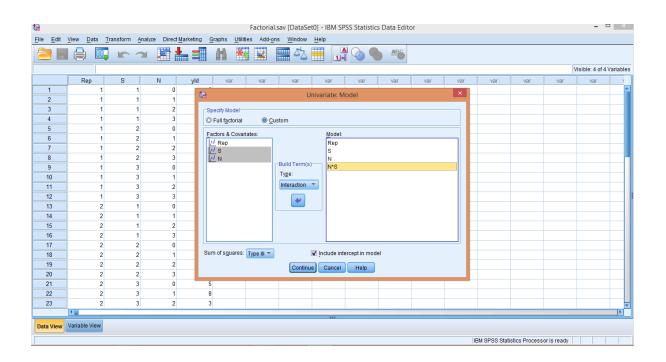

Rep	S	N	Yield
1	1	0	8.30
1	1	1	9.30
1	1	2	11.30
1	1	3	10.50
1	2	0	5.70
1	2	1	4.70
1	2	2	5.30
1	2	3	6.50
1	3	0	5.00
1	3	1	7.00
1	3	2	3.30
1	3	3	2.70
2	1	0	10.30
2	1	1	9.00
2	1	2	11.50
2	1	3	15.70
2	2	0	4.50

2	2	1	5.30
2	2	2	5.50
2	2	3	8.30
2	3	0	4.70
2	3	1	8.30
2	3	2	3.30
2	3	3	4.30
3	1	0	8.00
3	1	1	9.50
3	1	2	11.30
3	1	3	10.50
3	2	0	8.30
3	2	1	8.00
3	2	2	8.00
3	2	3	8.00
3	3	0	1.50
3	3	1	2.50
3	3	2	2.50
3	3	3	1.30


Step 2: Start \rightarrow All Programs \rightarrow All Programs \rightarrow SPSS


Step 3: Enter data in SPSS Data Editor


Step 4: Analyze → General Linear Model → Univariate.


Step 5: Select yld and send it to the Dependent Variable box; Rep, S and N may be selected and assigned in Fixed Factor(s) box.

Step 6: Model \rightarrow Custom \rightarrow select Main effect \rightarrow Put Rep, S, N into model box \rightarrow select Interaction \rightarrow S×N to Model \rightarrow continue

Step 7: Univariate \rightarrow Post Hoc \rightarrow select Factors S, N \rightarrow Post Hoc Test \rightarrow Duncan \rightarrow continue \rightarrow OK

Output:

Tests of Between-Subjects Effects

Dependent Variable: yld

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	316.227ª	13	24.325	8.178	.000
Intercept	1731.947	1	1731.947	582.291	.000
Rep	6.971	2	3.485	1.172	.328
S	262.021	2	131.010	44.046	.000
N	7.552	3	2.517	.846	.483
S * N	39.684	6	6.614	2.224	.079
Error	65.436	22	2.974		
Total	2113.610	36			
Corrected Total	381.663	35			

a. R Squared = .829 (Adjusted R Squared = .727)

Post Hoc Tests:

S -Homogeneous Subsets

yld

Duncan

2 464				
S	N	Subset		
		1	2	3
3	12	3.87		
2	12		6.51	
1	12			10.43
Sig.		1.000	1.000	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square (Error) = 2.974.

a. Uses Harmonic Mean Sample Size = 12.000.

b. Alpha = 0.05.

N-Homogeneous Subsets

Yld

Duncan

N	N	Subset
		1
0	9	6.26
2	9	6.89
1	9	7.07
3	9	7.53
Sig.		.163

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 2.974.

a. Uses Harmonic Mean Sample Size = 9.000.

b. Alpha = 0.05.

Do Yourself

An experiment was conducted at Ludhiana center on cropping system using a factorial experiment with two factors viz., N-Nitrogen (0, 25, 50 and 75 kg/ha), P-Phosphorous (0, 15 and 30 kg/ha). These 12 treatment combinations were arranged in three replications. Analyze the data and draw your conclusion.

	R1	R2	R3
N_0P_0	10.70	11.20	11.00
N_0P_{15}	24.60	25.00	27.70
N_0P_{30}	24.00	23.30	23.70
$N_{25}P_0$	19.70	20.00	19.60
N ₂₅ P ₁₅	23.00	23.10	22.70
$N_{25}P_{30}$	14.60	15.00	14.70
$N_{50}P_{0}$	18.00	18.10	17.70
N ₅₀ P ₁₅	20.70	21.00	20.60
$N_{50}P_{30}$	10.70	11.00	10.60
$N_{75}P_0$	19.60	20.00	19.70
N ₇₅ P ₁₅	17.70	19.10	18.00
N ₇₅ P ₃₀	10.70	11.20	11.00
Total	214.00	218.00	217.00

Reference Books:

- 1. A Hand Book of Agricultural Statistics, S. R. S. Chandel, Achal Prakashan Mandir, Kanpur.
- 2. A Text book of Agricultural Statistics, R. Rangaswamy, New Age International (P) Limited, publishers.
- 3. Biometrical Methods in Quantitative Genetic Analysis, R.K. Singh and B. D. Chaudhary, Kalyani Publishers.
- 4. Design Resources Server: www.iasri.res.in
- 5. E-Manual Winter School IASRI.
- 6. Fundamentals of Mathematical Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand & Sons Educational Publications.
- 7. Fundamentals Applied Statistics, S.C. Gupta and V.K. Kapoor, Sultan Chand & Sons Educational Publications.
- 8. Programmed Statistics, B.L. Agarwal, New Age International (P) Limited, publishers.
- 9. Probability and Statistical Inference Theory and Practice, D. Bhattacharya and S. Roy Chowdhury, U. N. Dhur & Sons.
- 10. Statistics Theory and Practice, D. Bhattacharya and S. Roy Chowdhury, U. N. Dhur & Sons.
- 11. Statistical Methods, K.P. Dhamu and K. Ramamoorthy, AGROBIOS (INDIA)
- 12. Statistics for Agricultural Sciences, G. Nageswara Rao, Second Edition, BS Publications, Hyderabad.

